CO Oxidation on Pt-Group Metals from Ultrahigh Vacuum to Near Atmospheric Pressures. 2. Palladium and Platinum

نویسندگان

  • F. Gao
  • Y. Wang
  • Y. Cai
چکیده

CO oxidation on Pd(100), -(111), -(110), and Pt(110) single crystals was studied at steady-state conditions at low (e2 × 10-3 Torr) and high (2-88 Torr) pressures at various reactant compositions. At low pressures the reaction fell into two regimes, one with a CO-dominant surface where the CO2 formation rate is low, and a second with an O-dominant surface where the reaction rate is high. Within this second regime, the reaction is collision-limited with no oxygen inhibition. Under high-pressure reaction conditions, three reaction regimes are evident: (i) a CO-inhibited metallic regime displaying a low CO2 formation rate; (ii) an oxygen-rich metallic regime with a high CO2 formation rate; and (iii) a high-temperature regime where the CO2 formation rate is either mass transfer limited on a metallic surface or limited by the reduced reactivity of the oxidized surface. The superior activity of Pt group metal oxides compared to the reduced metal, as proposed recently, was not observed in this study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CO oxidation trends on Pt-group metals from ultrahigh vacuum to near atmospheric pressures: A combined in situ PM-IRAS and reaction kinetics study

0039-6028/$ see front matter 2008 Elsevier B.V. A doi:10.1016/j.susc.2008.10.031 * Corresponding author. Tel.: +1 979 845 0214; fax E-mail address: [email protected] (D The CO oxidation reaction on Pt-group metals (Pt, Rh, and Pd) has been investigated at low (610 3 Torr) and near atmospheric (1–10 Torr) pressures in a batch reactor under steady-state conditions and at various gaseous ...

متن کامل

Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures

CO oxidation over platinum group metals has been investigated for some eight decades by many researchers and is considered to be the best understood catalytic reaction. Nevertheless, there has been a renewed interest in CO oxidation recently because of its technological importance in pollution control and fuel cells. Removal of COx from automobile exhaust is accomplished by catalytic converters...

متن کامل

CO Oxidation on Pt-Group Metals from Ultrahigh Vacuum to Near Atmospheric Pressures. 1. Rhodium

The CO oxidation reaction on Rh(111) was studied both at low pressures (e2 × 10-4 Torr) under steadystate conditions and at high pressures (0.01-88 Torr) in a batch reactor at various gaseous reactant compositions. Surface CO and O coverages were determined using polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and X-ray photoelectron spectroscopy (XPS). CO titratio...

متن کامل

CO oxidation on ruthenium: The nature of the active catalytic surface

The oxidation of CO, i.e. CO + =2O2 ! CO2, over metal surfaces is one of the most studied catalytic reactions. The details of the reaction mechanism under ultrahigh vacuum (UHV) conditions have been well understood for some time [1]. Under reducing or mildly oxidizing conditions for Pt, Pd, and Rh, metals used in automotive catalytic converters, the reaction proceeds via the Langmuir–Hinshelwoo...

متن کامل

Design of Highly Uniform Platinum and Palladium Nanoparticle Decoration on TiO2 Nanotube Arrays: An Efficient Anode to the Electro-Oxidation of Alcohols

We explore electro-catalytic properties of a system consisting of platinum and palladium nanoparticles dispersed over a nanotubular self-organized TiO2 matrix. These electrodes prepared by electroess and microemulsion of palladium and palladium nanoparticles on to TiO2 nanotubes, respectively. Titanium oxide nanotubes were fabricated by anodizing titanium foil in ethylene glycol (EG) fluoride-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009